
How Memory Reordering
Can Ruin Your Day
... and your lock-free algorithms.

Multicore CPUs are
everywhere.

In your server,

in your laptop,

in your pocket,

even in your hard drive itself.

Cool, let’s share some data!

Sometimes, it’s simple atomic operations,

often, it’s not.

Concurrent modifications may interfere.

That’s tricky. Let’s use locks.

They provide simple mutual exclusion.

Acquire the lock: Get in... or wait.

Let’s not use locks?

Bottlenecks

Overhead

Lock-free algorithms

So, let’s implement...

... a lock.

... a lock.

More specifically, a simple spinlock...

... which is itself a lock-free algorithm.

Easy to use, easy to reason about.

Peterson’s Algorithm

Simple spin lock, suitable for two threads.

Uses three shared variables:

One flag per-thread indicating that it “wants in”,

one integer saying which thread’s turn it is

flag[A] :=
true

A wants in

turn := B

go first, B!

flag[B]?

B interested?

turn=B?

is it B’s

turn?

and

flag[B]:=
true

B wants in

turn:= A

go first, A!

flag[A]?

A interested?

turn=A?

is it A’s

turn?

and

A

B

volatile bool flag[2] = {false, false};

volatile int turn = 0;

void lock(int id) {

 int other_id = 1 - id;

 flag[id] = true; // we want in

 turn = other_id; // ... but let the other in first

 while (flag[other_id] && turn == other_id) /* spin */;

}

void unlock(int id) {

 flag[id] = false; // we don't want in anymore

}

A simple shared counter:
volatile int counter = 0;

void counting_thread(int my_id) {

 for (int i = 0; i < thread_cycles; i++){

 lock(my_id);

 counter++;

 unlock(my_id);

 }

}

int main(void) {

while(true) {

... create threads ...

... wait for threads to exit ...

 printf("counter: %i (%i)\n", counter,

 2*thread_cycles - counter);

}

 return 0;

}

not atomic!

Let’s try it out on our desktop!

Each thread increments the counter 10,000,000 times.

We expect the final counter to be 20,000,000.

Let’s try it out on our desktop!
% ./count-lock-no-barrier-O2
counter: 19999865 (135)
counter: 19999775 (225)
counter: 19999839 (161)
counter: 19999881 (119)
counter: 19999802 (198)
counter: 19999832 (168)
counter: 19999844 (156)

Why?

Broken algorithm...?

No, pretty sure it’s right.

Besides, it does work on Uni-Processor.

So this means that...

Our assumptions are wrong.

Our CPU’s memory model is not as strong.

The strongest memory model is when every core sees
every memory access in program order.

This is called sequentially consistent.

Let’s take a look at the manual.

“Loads May Be Reordered with Earlier Stores
to Different Locations
The Intel-64 memory-ordering model allows a load to be
reordered with an earlier store to a different location.

However, loads are not reordered with stores to the same
location.”

Intel® 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3A: System Programming Guide, Part 1,

Section 8.2.3.4:

Intuitively (and entirely speculative):

A core modifies a value, writes it out in its own cache...

... but it may be more convenient to commit those
stores to memory “later”.

In the meantime: some loads from other locations.

void lock(int id) {

 int other_id = 1 - id;

 flag[id] = true; // STORE flag[id]

 turn = other_id; // STORE turn

 while (flag[other_id] && // LOAD flag[other_id]

 turn == other_id) // LOAD turn

 /* spin */;

}

STORE

flag[A]

A wants in

STORE

turn := B

go first, B!

LOAD

flag[B]

B interested?

LOAD

turn

is it B’s

turn?

and

STORE

flag[B]

B wants in

STORE

turn :=

A

go first, A!

LOAD

flag[A]

A interested?

LOAD

turn

is it A’s

turn?

and

A

B

STORE

flag[A]

STORE

turn := B

LOAD

flag[B]

LOAD

turn

STORE

flag[B]

STORE

turn :=

A

LOAD

flag[A]

LOAD

turn

A

B

STORE

flag[A]

A wants in

STORE

turn := B

go first, B!

LOAD

flag[B]

B

interested?

LOAD

turn

is it B’s

turn?

STORE

flag[B]

B wants in

STORE

turn :=

A

go first, A!

LOAD

flag[A]

A

interested?

LOAD

turn

is it A’s

turn?

No! My
Turn!

No! My
Turn!

A A A AB B B B

Yes, but...

STORE

flag[A]

A wants in

STORE

turn := B

go first, B!

LOAD

flag[B]

B

interested?

LOAD

turn

is it B’s

turn?

STORE

flag[B]

B wants in

STORE

turn :=

A

go first, A!

LOAD

flag[A]

A

interested?

LOAD

turn

is it A’s

turn?

No! My
Turn!

No! My
Turn!

A A A AB B B B

both enter

Yes, but...

Memory Barriers: Saving us
from weakness!

Dedicated CPU instructions.

e.g. MFENCE on x86

“Do not reorder memory across this barrier!”

#define MFENCE() { __asm__("mfence" ::: "memory"); }

void lock(int id) {

 int other_id = 1 - id;

 flag[id] = true; // STORE flag[id]

 turn = other_id; // STORE turn

 MFENCE();

 while (flag[other_id] && // LOAD flag[other_id]

 turn == other_id) // LOAD turn

 /* spin */;

}

=> flag[other_id] not reordered

with the stores anymore

% ./count-lock-mem-barrier-O2
counter: 20000000 (0)
counter: 20000000 (0)
counter: 20000000 (0)
counter: 20000000 (0)
counter: 20000000 (0)
counter: 20000000 (0)
counter: 20000000 (0)
...

Cool!�
Let’s try it out on our mobile!

What!�
But I used a barrier!

Well...
AMD64 x86

incoherent instruction pipeline X
stores reordered after loads X X

Well...
AMD64 x86 ARMv7

incoherent instruction pipeline X X
stores reordered after loads X X X
stores reordered after stores X
loads reordered after loads X
loads reordered after stores X
atomic reordered with loads X
atomic reordered with stores
 X

Many additional hazards...

void counting_thread(int my_id) {

 for (int i = 0; i < thread_cycles; i++){

 lock(my_id);

 counter++;

 unlock(my_id); // flag[id] = false;

 }

}

Reorder those two, and you’re gonna have

a bad time.

For example:

We need more barriers.

Intel’s memory model specification came late.

Besides MFENCE, there are also LFENCE and SFENCE.

Still useful, because some parts of the CPU aren’t so
strong... (SSE)

Funny story with Intel, by the way.

Use locks.

Do not implement your own locks.

Use the atomic primitives of your platform.

Do not implement your own atomic primitives.

If you use C++11, use std::atomic.

It’s wonderful!

volatile is not enough.

If you use Java, use volatile, synchronized.

They strengthened it to make it less confusing.

If you use C...

... then it really depends on what you have.

gcc has atomic builtins.

BSDs have the atomic_* library calls.

iOS and OS X have the atomic(3) functions:

OSAtomicIncrement32Barrier,
OSAtomicCompareAndSwap64Barrier,
OSAtomicTestAndSetBarrier...

Windows has... essentially the same stuff, but I
don’t know a lot about Windows.

If you write an operating system, then you know
what you’re doing.

Implement your own locks.

Implement your own atomic primitives.

Hand-code your barriers.

Read your CPU’s manual first.

Your CPU can, and will reorder your memory accesses.

Identify where this is a problem,

and use your platform’s synchronization primitives
appropriately.

